
Beginning IDL!
Table of Contents!
Introduction …………………………………………………… 1!
The IDL Interactive Environment and Basic operations….. 1-3!
Working with Arrays ………………………………………….. 4-7 !
If Statements and For/While Loops ………………………… 8-9!
File Input/Output ……………………………………………… 10-11!
Functions and Procedures ……………………………………12-14!
Introduction to Plotting ……………………………………….. 15-17!
Histograms ……………………………………………………. 18!
__!
Introduction!!
IDL is one of the programming languages commonly used in astronomy. The long use
of IDL in the astronomy community has resulted in the development of many astronomy-
related libraries.!!
Libraries are essentially bunches of add-on codes written in a language that people
can download and use. Usually these codes have a unifying purpose. For example,
someone might make a library of code that has to do with astro statistics, or one that
does cosmological calculations. The possibilities are endless!!!
For the purposes of this class, we will be starting simple, but don’t be surprised if you
end up using some user-made libraries for your research projects (your mentors will
help you, or course). In other words, what we do here is just the beginning!!
__!
The Interactive Environment and Basic Operations!!
Ok, first thing’s first. IDL has an interactive environment, which is pretty convenient to
use. Simply type idl into your terminal. You will get something that looks like this:!!
IDL Version 6.3 (linux x86_64 m64). (c) 2006, Research Systems,
Inc.
Installation number: .
Licensed for use by: !
IDL> !
To Exit, just type “exit” and hit return.!
Now you are ready to start doing stuff! 

�1

!!
Some Basic Operations, Understanding Variable types!!

!
Using Some Math Functions!!
Functions in idl are called in a way similar to the syntax in your math classes. A function
called “Function” that takes an input, x is called by writing Function(x). If
Function takes more than one variable, then it is called by writing !
Function(x,y,z,...).!!
There are many useful functions that are already recognized by IDL right when you first
start it up!!!!!!!!

IDL	
 Statements Notes	
 and	
 Ques1ons
> print, 3*5 1.	
 What	
 happens	
 if	
 you	
 don't	
 use	
 a	
 comma?
> a=3*5 This	
 equal	
 sign	
 is	
 an	
 assignment.	
 Read	
 this	
 as	
 "a	

gets	
 the	
 value	
 of	
 3	
 times	
 5."
> help,a!
> help,A

3.	
 What	
 does	
 help	
 do?	
 What's	
 the	
 difference	

between	
 using	
 a	
 and	
 A?	
 “INT”	
 means	
 integer.

> d=32767 !
> print,d+1

Integers	
 run	
 from	
 -­‐32768	
 to	
 +	
 32768.	

4.	
 What	
 happened?

> print,d+1. 5.	
 What	
 is	
 the	
 difference	
 between	
 using	
 d+1	

and	
 d+1.?

> x = d+1.!
> help, x!

Different	
 types	
 of	
 Variables	

Float:	
 Floating-­‐point,	
 with	
 six	
 signiIicant	
 places.	

Double:	
 Floating-­‐point	
 with	
 approximately	

sixteen	
 decimal	
 digits.	

String:	
 A	
 sequence	
 of	
 0	
 to	
 32,767	
 characters.	

Long:	
 A	
 Iloat	
 that	
 has	
 space	
 for	
 bigger	
 numbers

> print,3/5!
> print,3/5.

What	
 is	
 the	
 difference?	

One	
 Iloating	
 number	
 makes	
 the	
 result	
 a	
 Iloat.

> width = 20!
> height = 5*9!
> print, width * height

6.	
 Explain	
 what	
 happened	
 in	
 these	
 three	
 lines.	

> print, 2^2!
> a = 5!
> print, 2^a, 2^2^a

7.	
 What	
 does	
 the	
 ^	
 do?

�2

""

IDL	
 Statements Notes	
 and	
 Ques1ons
> print, cos(180), cos(90) 8.	
 	
 Is	
 this	
 in	
 degrees	
 or	
 radians?
> print, !PI!

> print, !pi, !Pi, !pI

!PI	
 is	
 an	
 internal	
 variable	
 in	
 IDL.	
 	
 IDL	
 knows	
 what	

you	
 mean	
 without	
 you	
 having	
 to	
 define	
 it!	
 Again,	

IDL	
 doesn’t	
 care	
 about	
 upper	
 or	
 lower	
 case	

leAers.	
 We	
 will	
 see	
 internal	
 variables	
 more	

later....

> print, cos(!PI), cos(!PI/2)!

> print, sin(!PI/2), tan(!PI/2)

Aha!	
 Much	
 beAer!

> print, acos(0), asin(0)!

> print, acos(0)*180/!PI!

> print, asin(0)*180/!PI!

> print, acos(1), asin(1)!

> print, acos(1)*180/!PI!

> print, asin(1)*180/!PI

9.	
 What	
 do	
 acos	
 and	
 asin	
 do?	
 	
 	
 What	
 does	

mul6plying	
 by	
 180/!PI	
 do?

> a = 5!

> print, a, alog10(a), alog10(10^a)!

> print, exp(a), alog(exp(a))

10. What	
 does	
 alog10()	
 do?	

11.	
 What	
 do	
 exp()	
 and	
 alog()	
 do?

> print, 10 mod 4!

> print, 10 mod 3!

> print, 9 mod 3!

> print, 10 mod 2, 10 mod 5

12.	
 What	
 does	
 “mod”	
 do?	
 	
 Hint:	
 think	
 about	

division	
 and	
 remainders!

�3

__"
Working with Arrays!"
Arrays are convenient ways to store data. Every array is essentially a matrix of values."
Recall what a matrix is:"" " """""""""
You can also have one dimension matrices (vectors are examples of this!) or may more
dimensions (though those are harder to visualize)""
Each value is given a particular address based on where it is in the matrix. Take this
matrix, for example:"

! !
! a is in position 1,1"
" b is in position 1, 2"
" f is in position 3, 2"
"

Note that all of the “addresses” above have two numbers. This is because the matrix is
a two dimensional matrix. If it was, say, 5 dimensional then it would have 5 numbers in
its “address” 

�4

2x2 2x3 3x2

Rows

Columns

""
Defining And Manipulating Arrays in IDL!"
IDL	
 Statements Notes	
 and	
 Ques1ons
> a = intarr(5)!

> print, a!

> b = fltarr(5)!

> print, b!

> c = dblarr(5)!

> print, c!

> d = dblarr(5,3)!

> print, d!

> e = dblarr(5,4,3)!

> print, e

intarr,	
 fltarr,	
 and	
 dblarr	
 allow	
 you	
 to	
 define	

arrays	
 of	
 integers,	
 floats,	
 and	
 double	
 type	

numbers	
 respecFvely.	
 	
 You	
 can	
 make	
 your	
 arrays	

have	
 different	
 shapes.	

"
You	
 will	
 need	
 to	
 get	
 used	
 to	
 working	
 with	
 arrays	

of	
 more	
 than	
 two	
 dimensions.	
 	
 Look	
 at	
 how	
 IDL	

“visualizes”	
 these	
 arrays.	
 	
 Try	
 to	
 make	
 a	
 4	

dimensional	
 array;	
 a	
 5	
 dimensional	
 array.	
 	
 The	

visualizaFon	
 is	
 not	
 so	
 good	
 now...	

> a = intarr(100)!

> print, a!

> a = a+2!

> print, a!

> print, a^2!

> print, a*5!

> b = exp(a)!

> print, b!

> print, 10^b

Now	
 we	
 are	
 manipulaFng	
 arrays!	
 Here	
 is	
 why	

arrays	
 are	
 so	
 useful.	
 	
 They	
 allow	
 you	
 to	
 do	
 the	

same	
 opera/on	
 on	
 an	
 en/re	
 set	
 of	
 data.	
 """"
InpuRng	
 an	
 array	
 into	
 a	
 funcFon	
 gives	
 you	
 a	

new	
 array.

> print, a[0], a[2]!

> a[0] = 10!

> print, a[0]!

> c = [0,3,5,2]!

> print, a[c]!

> print, a[0], a[3], a[5], a[2]!

> print, c[11]

You	
 can	
 also	
 very	
 easily	
 select	
 parts	
 of	
 data	
 from	

arrays,	
 whether	
 it	
 be	
 a	
 single	
 element	
 or	
 a	
 range	

of	
 elements.	
 This	
 is	
 called	
 indexing	
 an	
 array.	

Note:	
 array	
 coun/ng	
 starts	
 at	
 0	
 "
You	
 can	
 also	
 index	
 an	
 array	
 with	
 another	
 array.	
 	

It	
 will	
 output	
 the	
 elements	
 of	
 the	
 array	
 in	
 the	

order	
 given	
 to	
 it.	
 "
NoFce	
 what	
 happens	
 when	
 we	
 try	
 to	
 index	
 an	

array	
 with	
 a	
 number	
 greater	
 than	
 its	
 size.

�5

""""""""""""""

> a[0:9] = 100!

> a[40:49] = 200!

> print, a!

> a[*] = 0!

> print, a

13.	
 What	
 does	
 the	
 ‘:’	
 do	
 here?	
 "
14.	
 What	
 does	
 the	
 ‘*’	
 do?

> b = dblarr(10,10,3)!

> print, b!

> b[0,0,0] = 10!

> print, b!

> b[*,0,0] = 1!

> print, b!

> b[0:4,0,0] = 2!

> print, b

	
 Now,	
 get	
 some	
 pracFce	
 manipulaFng	
 a	
 higher	

dimensional	
 array

> a = dblarr(10)!

> b = dblarr(10,10)!

> a[0] = 2!

> a[1:9] = 3!

> b[0,*] = 2!

> print, b[0,*]*a!

> c = dblarr(3,5)!

> print, b*c

Arrays	
 can	
 be	
 mulFplied	
 together!	
 However,	
 note	

that	
 this	
 is	
 NOT	
 the	
 same	
 as	
 matrix	

mulFplicaFon!	
 "
Make	
 sure	
 you	
 can	
 explain,	
 in	
 words,	
 what	
 each	

of	
 these	
 commands	
 do	
 ""
15.	
 What	
 happens	
 when	
 you	
 mul6ply	
 arrays	
 with	

different	
 dimensions?	
 Mul6plying	
 arrays	
 that	

have	
 different	
 sizes	
 is	
 usually	
 not	
 a	
 good	
 idea.

�6

Useful built-in IDL functions for Arrays. !"

"

IDL	
 Statements Notes	
 and	
 Ques1ons
> a = dblarr(3,5)!

> print, a!

> print, transpose(a)

16.	
 What	
 does	
 transpose	
 do?

> b = indgen(100)!

> print, b!

> print, n_elements(b),
n_elements(a)!

> b = b + 3!

> print, where(b gt 10)!

> print, where(b lt 10)!

> print, where(b eq 11)!

> print, b[where(b eq 11)]!

> o = where(b lt 10)!

> print, b[o]!

> print, b[where(b lt 10)]!

> print, where(b gt 5 and b lt 10)!

> print, where(b lt 10 and b gt 10)!

> print, where(b eq 8 or b eq 10)!

> print, b[where(b eq 8 or b eq 10)]

17. What	
 does	
 indgen	
 do?	
 What	
 does	

n_elements	
 do?	

"
"
"
18. What	
 does	
 where	
 do?	
 what	
 do	
 ‘gt’,	
 ‘lt’	
 	
 and	

‘eq’	
 indicate?	

"
"
"
the	
 “and”	
 can	
 be	
 very	
 useful	

“	
 -­‐1	
 “	
 indicates	
 that	
 your	
 statement	
 is	
 true	
 for	

none	
 of	
 the	
 elements	
 in	
 the	
 array.	
 	
 This	
 can	
 also	

be	
 very	
 useful.	
 	
 Remember	
 it!	

“or“	
 is	
 also	
 useful!

> c = [1,6,3,4,9,8,7]!

> print, c!

> o = sort(c)!

> print, o!

> print, c[o]!

> print, max(c), min(c)!

> d = [3,5,2,7,4,8,10]!

> print, d[where(c eq max(c))]

	
 This	
 is	
 another	
 useful	
 way	
 of	
 defining	
 an	
 array.	
 	

Just	
 make	
 a	
 list	
 of	
 numbers	
 in	
 brackets!	

"
"
19. What	
 does	
 sort	
 do?	

20. What	
 do	
 max	
 and	
 min	
 do?	

"
21.	
 What	
 is	
 happening	
 in	
 his	
 line?

�7

__"
If Statements and For/While Loops!"
“If” Statements allow you to tell IDL to do something only if a certain logical statement
is true.!"
The Syntax is rather simple.""
> if [logical true/false statement] then [do something] "
The logical statements used in if statements will have similar syntax to the “where”
statements used above. Examples of good logical statements would be:"
> if var lt 0 then print, “hello”
> if var gt 0 then print, “hello”
> if var eq 0 then print, “hello” "
Assuming that “var” is just some variable (NOT an array)""
Your if statement must be a statement that is true or false. So, you have to be careful
using arrays. For example, the following would cause problems.""
> a = [1,2,3,4,5,6]
> if a eq 6 then print, “hello "
The above if statement is both true and false, since one element of a is equal to 6. In
other words, it makes no sense and IDL will yell at you!""
> if a lt 10 then print, “hello” "
Even though all of the elements in a are less than 10, IDL still won’t like that you are
leaving the possibility for both true and false statements.""
Of course, there are ways to use arrays in “if” statements. For example:""
> if n_elements(a) eq 6 then print, “hello” "
“For” and “While” Loops!"
Sometimes, you want to run a piece of code many times. Do do this this, “for” and
“while” loops are very useful. The general syntax for a for loop is as follows""
> for i=num1,num2 do [something] "
In words, this code loops through values of “i” from num1 to num2. Of course, “i” is just
an example. You can name the variable anything you want. It is important to realize
that “i” is a real variable that IDL is updating every step."

�8

For example:""
> for i = 0,10 do print, i""
The output from the above statement will be:""
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10 "
While loops, on the other hand, will loop continuously until the “while” statement is no
longer met. In other words, you should give IDL a logical statement that is initially true,
but will become false eventually. For example:""
> a = 0
> while a lt 10 do a = a +1
> print, a""
What happened above? First, we initialized the variable a to be 0, which is obviously
less than 10. So, the while loop kept adding 1 to our variable. After each iteration, it
checks to see if a is still less than 10. If it is, then it adds another 1 to it. Once a = 10,
IDL checks once more and the logical statement is now false, so it stops. At the end of
the loop, a is 10.""
We can combine our loops with if statements. For example:""
> a = intarr(100)
> a[55] = 1
> for i=0,99 do if a[i] eq 1 then print, i""
What happened above? We first initialized “a” to be an array where one of the elements
was 1 and the rest 0. We then loop through the elements of the array using “i” . For
each of these elements, we check to see if it equals 1. If it does, then we print out the
value of “i”.""
Loops will get much more interesting once we start making our own functions and
procedures. For now, you are limited to one line statements (because IDL’s interactive
environment is not as good as python’s, sadly)"

�9

"""
___!
File Input/Output!"
Most of the time, you will be working with data. That data is going to be located in files.
Thus, reading files is a must! Luckily it is (relatively) straight forward!""
Often, the files you read will be columns of data, where each column represents a
certain type of data and each row represents a different object (like the BrightStars.dat
file we worked with already).""
To read in data like this, it is easiest to use the readcol command. It works like this:""
> readcol, “filename”, var1,var2,...,varN,format = ‘...’ "
This will read in each of the N columns in “filename” into the variables var1 through
varN. The name of the file must always be input with quotation marks (either single or
double). Each of the variables will be an array of length equal to the number of rows in
the file. The ith element of each array corresponds to data from the ith object in the file.""
The “format” variable is crucial here. It will tell IDL what kind of data it is reading in. The
syntax for this is a string (i.e. bracketed by quotations) of letters separated by commas.
For example:""
> readcol,”filename”, v1,v2,v3,v4,v5,v6, format = ‘a,a,i,f,f,f’ "
In most cases, the format string should have the same number of elements as the
number of variables you are reading in.""
IMPORTANT: IDL assumes that you will be reading in variables from the left to the right
and that different columns of data are separated by a space.!"
If you put less variables than there are columns, then IDL will read in the first N columns
of data, where N is the number of variables you give it.""
If you want to skip a column, put an ‘x’ in the format sequence. For example, format
= ‘a,i,i,x,i,f’ will read in the first, second, third, fifth, and sixth columns of data,
but will skip the fourth (assuming you gave readcol five variables). Here is a list of some
of the format strings and what they mean:"
a -- string"
i -- integer"
l -- long (just a bigger integer)"
ll -- 64 bit long (even bigger integer)"

�10

f -- float"
d -- double"
x -- skip the column"
Now, onto writing stuff to files. First, you have to open the file.""
>openw,1,”filename” "
The ‘w’ at the end of oepen tells IDL that you want to open “filename” for writing. The ‘1’
is just a marker so that you can open multiple files and IDL will be able to tell them
apart. You can choose any number you like.""
Now, that our file is open, we can write stuff to it.""
> a = [1,2,3,4,5]
> printf, 1, a "
The printf statement works similar to the normal print statement, but the first variable it
takes is not output, but rather the marker for the file you want to write to. Say I open a
new file and want to write to that one, I would do something like this...""
> openw, 2, “file2”
> printf, 2, a
> printf, 2, “this is the second file” "
NOTE: that print statements automatically make a new line.""
When you are done with your files, close them.""
> close, 1
> close, 2 "
This last step might not seem important, but it really is. You always want to close files
that you are opening.!"
Now, one important thing to know about openw is that if you use it on an existing file it
will automatically overwrite any file you already have with the same name in your
working directory. If you would like to add stuff to a file use the “append” keyword.""
> openw, 3, “file_that_exists”,/append "
You will be seeing this keyword format in the future. Optional inputs to idl procedures
are either written as Keyword = [stuff] or /Keyword. The latter is for when the
keyword is just like an on/off switch. Either you do something or you don’t (like
Append). The former is used when there are many options (like Format)""
�11

__"
Defining Procedures and Functions!"
IDL files end in “.pro”. Simply enter emacs filename.pro into the command line.
Now we are editing an IDL file!""
This is the general format for functions""
function FunName, var1, var2, ... , varN
 [do some stuff]
 return, [something]
end "
The above defines a function called “FunName” which takes N variables as input. To
call the function and collect the value it returns, first make sure you saved filename.pro.
Now, open up the IDL environment and compile filename.pro. You need a return
statement in a function!""
> .compile filename.pro "
when you do this, you will see something like this: % Compiled module: FUNNAME.""
Now, you can call the function from the interactive environment. Again, notice that
capitol/lowercase letters don’t matter to IDL.""
> output = funname([num1],[num2],...[numN]) "
In order to collect the output from your function, you must either print the output or
store it in a variable. The value stored in output will be whatever value was in your
return statement above.""
Functions can only return one value. If you want to save a piece of code, but allow it
to store more than one value permanently, then use procedures.""
The general format for procedures is the following:""
pro ProName, var1, var2, ..., varN
 [do some stuff]
end "
Now, this looks very similar to functions... so what is the difference? ""
Well, for one, notice that you do not need a return statement. Because of this, we can
just run procedures straight from the command line. ""
�12

> .compile filename.pro
> ProName, var1, var2, ..., varN "
Thus, procedures are nice when all we want to do is run a series of commands.
Functions are nice when we are actively manipulating the input to get a single result.""
Notice that we have already been using procedures and functions.""
Examples of Procedures we’ve used: print, openw, readcol
Examples of Functions we’ve used: cos(), exp(), n_elements() "
As a rule of thumb, functions should be simpler statements that do very specific things,
while procedures are for more complicated series of code. Procedures where you
would utilize many functions and procedures to do a number of different things.""
The other cool thing that both functions and procedures can do is change input
variables. For example, say I have a function that does the following:""
function testfun, a, b
 a = a +10
 b = b - 3
 return, a+b
end "
I would use the function like this""
> a = 10
> b = 20
> c = testfun(a,b)
> print, a, b, c
20 17 37 "
The function testfun still returns a new value (because it has to!) but it can also be
used to manipulate already existing variables. Procedures can do this as well.""
You can also input undefined variables into functions and procedures, as long as they
are defined within the function/procedure itself.""
You can have any number of procedures and functions defined in your .pro file.
However, you cannot call a function before you define it in the file (order goes top-
down). Once you run .compile on your .pro file, you will have access to all user-
defined procedures and functions that exist within that file. """""
�13

For/While Loops and If Statments In Functions and Procedures!"
Using .pro files opens up a lot of options in IDL. For one, we can now do multiple line if
statements and loops."
The syntax is the following""
if [true/false statement] then begin
 [do stuff]
 [do more stuff]
endif "
for var = 0, 99 do begin
 [do stuff]
 [do more stuff]
endfor "
while [true/false statement] then begin
 [do stuff]
 [do more stuff]
endwhile "
So many more options! 

�14

"
__"
Intro to Plotting!"
One advantage to languages like IDL is that they are (relatively) easy to plot with.""

"""

IDL	
 Statements Notes	
 and	
 Ques1ons
> x = findgen(100)/4!

> y = findgen(100)/2!

> plot, x,y!

> plot, y!

> z = findgen(100)/3!

> oplot,x,y !

> plot,x,y,xtitle='x-axis',$!
ytitle='y-axis',thick=2,$!
linestyle=1, charsize=1.5,$
title='plotty-plot' !

> plot, x, y, psym=1

"
The	
 plot	
 command	
 will	
 automaFcally	
 open	
 a	
 plot	

window.	

22. What	
 happens	
 when	
 you	
 only	
 specify	
 one	

value?	

oplot	
 allows	
 you	
 to	
 plot	
 something	
 without	

overwriFng	
 the	
 first	
 plot.	

There	
 are	
 many	
 opFons	
 to	
 define	
 in	
 the	
 ploRng	

environment.	
 	
 Note:	
 the	
 ‘$’	
 just	
 allows	
 you	
 to	

conFnue	
 a	
 single	
 line	
 onto	
 the	
 next	
 line.	
 	
 In	
 other	

words,	
 IDL	
 sees	
 lines	
 with	
 ‘$’	
 as	
 a	
 single	
 line.	

23. Try	
 different	
 values	
 for	
 linestylem(0-­‐5),	
 thick,	

and	
 charsize.	
 	
 What	
 do	
 these	
 do?	

24. Try	
 different	
 values	
 for	
 psym	
 (0-­‐7).	
 What	
 does	

it	
 do?

> !p.multi = [4,2,2,0]!

"
"
"
> plot, [0,1],[0,1]!

> plot, [0,1],[0,1]!

> plot, [0,1],[0,1]!

> oplot, [0,1],[0,0.5]!

> plot, [0,1],[0,1]!

> plot, [0,1],[0,1]

No	
 let’s	
 display	
 mulFple	
 plots	
 on	
 the	
 same	
 page!	

This	
 defines	
 a	
 global	
 variable	
 p.mulF.	
 	
 The	

general	
 form	
 should	
 be	
 p.mulF	
 =	
 [A,B,C,D]	
 where	

A	
 =	
 total	
 number	
 of	
 plots	
 (
 =	
 BxC[xD])	

B	
 =	
 number	
 of	
 columns	

C	
 =	
 number	
 of	
 rows	

D	
 =	
 number	
 of	
 plots	
 stacked	
 in	
 z-­‐dir	
 (I	
 would	

always	
 leave	
 this	
 at	
 0)	

Every	
 new	
 plot	
 command	
 you	
 do	
 will	
 make	
 a	
 plot	

in	
 another	
 space.	
 oplot	
 will	
 keep	
 you	
 in	
 your	

current	
 ploRng	
 space.	

If	
 you	
 plot	
 too	
 many	
 Fmes,	
 it	
 will	
 reset.

�15

Making Your Plots Look Fancier!"
PSYM lets you set the point type (you explored this a bit earlier)!
0 = no point (just connected by lines)"
1 = +"
2 = *"
3 = points"
4 = diamond"
5 = triangle"
6 = square"
7 = X"
10 = histogram mode"
Negative values will make it so lines are used to connect your points. No lines will be
drawn for positive values""
Color lets you set the color (duh)!
The values you input for this will depend on the color table you use. Check out some of
the possible color tables here (#40 is a popular one):"
http://www.exelisvis.com/docs/LoadingDefaultColorTables.html""
Sadly, the numbers aren’t very intuitive. Higher numbers move you to the right on
whatever color table you loaded. You will need to do a lot of guess and checking to get
the color you really want.""
To load a color table, just type the command loadct, <table number>
Now, be careful. Setting the color will set EVERYTHING to that color... even the axes!
One way to get around this is to use the /NoData option.  "
First plot your axes:"
plot, [xmin,xmax],[xmin,xmax],/nodata
Then plot your data"
oplot, datax,datay,color=100 "
Labels and Legends are also very important, especially if you want people to
understand what you are plotting!""
Use the following keywords to label your plot!""
Title = “Plot Title” "
XTitle = “x-axis title”
YTitle = “y-axis title”
ZTitle = “z-axis title” "
To make a legend, you will use the LEGEND function. The general syntax is the
following:"

�16

http://www.exelisvis.com/docs/LoadingDefaultColorTables.html

"
legend,
[‘label1’,’label2’,etc.],psym=[…],linestyle=[...],color=[...] "
So, you give the legend function a list of labels, point styles, linestyles, and colors and it
will make you a legend, placing the first label with the first psym and the first linestyle,
etc.""
Example:"
legend,['Plus sign','Asterisk','Period'],psym=[1,2,3]
produces:!
 -----------------!
 | |!
 | + Plus sign |!
 | * Asterisk |!
 | . Period |!
 | |!
" " " ----------------- "
Place the legend on your plot with /right,/bottom, or /center "
To be really fancy, you can place it with position=[x,y], where x and y denote a
spatial coordinate on the figure (this is NOT a coordinate on your plot). Use this
keyword with /norm so that (0,0) is the bottom left edge of the figure and (1,1) is the
top right edge and (0.5,0.5) is in the middle.""
Saving plots!"
> set_plot, ‘ps’!

> device, filename=‘output.ps’!

> plot, x,y,
xrange=[0,20],yrange=[50,-10]!

> device,/close!

> set_plot, ‘x’

Here	
 we	
 will	
 plot	
 to	
 a	
 file.	
 First,	
 we	
 must	
 tell	

IDL	
 what	
 kind	
 of	
 file	
 we	
 will	
 write	
 to.	
 	
 “eps”	
 is	

another	
 common	
 file	
 type.	
 	
 Then,	
 we	
 must	
 tell	

it	
 the	
 file	
 we	
 want	
 to	
 write	
 to	
 with	
 the	

“device”	
 command.	

Note:	
 you	
 can	
 control	
 the	
 axes	
 ranges	
 with	

the	
 x/yrange	
 =	
 [x/ymin,x/ymax]	
 keyword.	
 	

This	
 also	
 allows	
 you	
 to	
 flip	
 axes	
 by	
 going	
 high	

to	
 low	
 rather	
 than	
 low	
 to	
 high	
 (i.e.	
 having	

ymin>ymax)	

When	
 you	
 are	
 done,	
 make	
 sure	
 to	
 close	
 your	

file	
 with	
 device,/close

If,	
 when	
 you	
 are	
 done,	
 you	
 want	
 to	
 go	
 back	
 to	

the	
 real	
 Fme	
 ploRng	
 we	
 had	
 before,	
 you	

must	
 reset	
 set_plot.

�17

__!
Histograms!"
In IDL, you use the function called HISTOGRAM. The output corresponds to the
number of elements in each bin specified by the function.""
general syntax is like any other function, where [optional key words] represents any list
or combination of keywords shown below.""
> result = HISTOGRAM(inputarray,[optional key words]) "
Optional keywords:""
binsize: sets the size of your bins"
nbins: sets the number of bins"
locations: sets the name of a different variable to which HISTOGRAM will output the
bin edges"
max: maximum value to consider (defaults to the maximum value of your data)"
min: minimum value to consider (defaults to minimum value of your data)""
Note:"
if neither nbins nor binsize is given, then binsize = 1. "
If nbins is given, then by default binsize = (max - min)/(nbins - 1)"""
Now... onto plotting! Simply plot using the plot command we’ve already learned, but with
psym = 10. Your x-value will just be the bin edges that the location keyword lets you
save.""
for example:""
> hist=histogram(data,location=bins,min=0,nbins=10,binsize=0.3)
> plot, bins, hist, psym=10

�18

