
Beginning Python!
Table of Contents!
Introduction ………………………………………………… 1!
The Interactive Environment and Basic Operations……. 1-4!
Working with Arrays ……………………………………….. 5-8!
If Statements and For/While Loops ……………………… 9-11!
File Input/Output …………………………………………… 12-15!
Writing Your Own Executables and Functions…………… 16-18!
Introduction to Plotting ……………………………………… 19-20!
Histograms …………………………………………………… 20!
__!
Introduction!!
Python is a very popular language used in a variety of fields. However, it has only been
adopted by the astronomy community on a large scale relatively recently. Thus, there
are less astronomy libraries in python than, for example, IDL. However, since there are
more code developers that work with python, the number of libraries of useful software
is increasing dramatically.!!
Libraries are essentially bunches of add-on codes written in a language and people
can use. Usually these codes have a unifying purpose. For example, someone might
make a library of code that has to do with astro statistics, or one that does cosmological
calculations. The possibilities are endless!!!
For the purposes of this class, we will be starting simple, but don’t be surprised if you
end up using some user-made libraries for your research projects (your mentors will
help you, or course). In other words, what we do here is just the beginning!!!
__!
The Interactive Environment and Basic Operations!!
Ok, first thing’s first. Python has an interactive environment, which is pretty convenient
to use. Simply type ipython into your terminal. You will get something that looks like
this:!
% ipython
Python 2.7.5 |Anaconda 1.6.1 (64-bit)| (default, Jun 28 2013,
22:10:09)
Type "copyright", "credits" or "license" for more information.
IPython 0.13.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: !

Note: You can also type the command python and you will get a slightly different (and
MUCH less cool) interactive environment. I see no reason to ever use this.!!
Interesting Fact: When using ipython, you can do things that would normally be
reserved for the command line like cd and ls. Try it out! Pretty cool!!!
To exit python, just type “exit” and hit return.!
Now you are ready to start doing stuff!!!
Some Basic Operations, Understanding Variable types!!

!!!

Python	
 Statements Notes	
 and	
 Ques1ons
> print 3*5!
> 3*5

1.	
 What	
 happens	
 if	
 you	
 use	
 a	
 comma?	
 Or	
 if	
 you	

don’t	
 even	
 say	
 “print”?

> a = 3*5 This	
 equal	
 sign	
 is	
 an	
 assignment.	
 Read	
 this	
 as	
 "a	

gets	
 the	
 value	
 of	
 3	
 times	
 5."

> type(a)!
> type(A)

3.	
 What	
 does	
 type	
 do?	
 What's	
 the	
 difference	

between	
 using	
 a	
 and	
 A?	
 “INT”	
 means	
 integer.

> d=32767 !
> d+1

Integers	
 run	
 from	
 -­‐32768	
 to	
 +	
 32768.	

4.	
 What	
 happened?

> d+1. 5.	
 What	
 is	
 the	
 difference	
 between	
 using	
 d+1	

and	
 d+1.?

> x = d+1.!
> type(x)!

Float:	
 Floating-­‐point,	
 with	
 six	
 signiIicant	
 places.	

Double:	
 Floating-­‐point	
 with	
 approximately	

sixteen	
 decimal	
 digits.	

String:	
 A	
 sequence	
 of	
 0	
 to	
 32,767	
 characters.

> 3/5!
> 3/5.

What	
 is	
 the	
 difference?	

One	
 Iloating	
 number	
 makes	
 the	
 result	
 a	
 Iloat.

> width = 20!
> height = 5*9!
> width * height

6.	
 Explain	
 what	
 happened	
 in	
 these	
 three	
 lines.	

> print 2**2!
> a = 5!
> print 2**a, 2**2**a

7.	
 What	
 does	
 the	
 **	
 do?

Importing Modules and using Functions!!
Most functionality in python requires the use of modules that you must import before
using. The Syntax for importing modules is simple!!
> import <module name> !
Modules will include useful functions (this is probably the reason you are importing it in
the first place!). Functions in python are called in a way similar to the syntax in your
math classes. A function called “Function” that takes an input, x is called by writing
Function(x). If Function takes more than one variable, then it is called by writing !
Function(x,y,z,...).!!
To use a function from the module called module you do the following:!!
> import module
> module.function(x) !
For example:!!
> import math
> math.cos(0) !
If you know you want to use all the functions in a module you can make your life a little
bit easier.!!
> from math import *
> cos(0) !
Now you don’t have to write math before every function you use! Why would you NOT
want to do this? Different modules may have functions with the same name. If you do
this, the last module function you import will overwrite the previous module functions of
the same name. Be very careful!!!
Some modules have sub-modules that you can get separately. !!
> from module import submodule
> submodule.function(x) !
You can also change the name of a module for your own purposes. This is nice when a
module is used a lot, but you don’t want to use the import * command. 
 
> import module as mod
> mod.function(x)  

!!
Using Some Math Functions!!

!!

Python	
 Statements Notes	
 and	
 Ques1ons
> import math!

> print math.cos(180), math.cos(90)

8.	
 	
 Is	
 this	
 in	
 degrees	
 or	
 radians?

> math.pi math.pi	
 is	
 an	
 internal	
 variable	
 in	
 the	
 math	

module.	
 	
 Python	
 knows	
 what	
 you	
 mean	
 without	

you	
 having	
 to	
 define	
 it!	
 (as	
 long	
 as	
 you	
 have	

loaded	
 “math”)

> print math.cos(math.pi),
math.cos(math.pi/2)!

> print math.sin(math.pi),
math.tan(math.pi/2)!

> from math import *!

> pi!

> cos(pi)

Aha!	
 Much	
 be@er!	

!
NoCce	
 the	
 difference	
 in	
 syntax	
 between	
 regular	

import	
 and	
 from	
 __	
 import	
 *

> print acos(0), asin(0)!

> print acos(0)*180/pi!

> print asin(0)*180/pi!

> print acos(1), asin(1)!

> print acos(1)*180/pi!

> print asin(1)*180/pi

9.	
 What	
 do	
 acos	
 and	
 asin	
 do?	
 	
 	
 What	
 does	

mul6plying	
 by	
 180/pi	
 do?

> a = 5!

> print a, log10(a), log10(10^a)!

> print exp(a), log(exp(a))

10. What	
 does	
 alog10()	
 do?	

11.	
 What	
 do	
 exp()	
 and	
 alog()	
 do?

> print 10 % 4!

> print 10 % 3!

> print 9 % 3!

> print 10 % 2, 10 5 5

12.	
 What	
 does	
 “%”	
 do?	
 	
 Hint:	
 think	
 about	
 division	

and	
 remainders!

__!
Working with Arrays!!
Arrays are convenient ways to store data. Every array is essentially a matrix of values.!!
Recall what a matrix is:!!!!!!!!!!!!!
You can also have one dimension matrices (i.e. 3x1, 5x1, etc. Vectors are examples of
3x1 arrays!). You can also have more dimensions more dimensions (though those are
harder to visualize)!!
Each value is given a particular address based on where it is in the matrix. Take this
matrix, for example:!!

a is in position 1,1!
b is in position 1, 2!
f is in position 3, 2!!!!

Note that all of the “addresses” above have two numbers. This is because the matrix is
a two dimensional matrix. If it was, say, 5 dimensional then it would have 5 numbers in
its “address”!!
In Python, we need a special module to use arrays. This module is called numpy and it
is one of the most useful tools that exists in python!!!
To use it, we just import it like any other module.!!
> import numpy as np !
This allows us to just type ‘np’ instead of ‘numpy’ when we want to use the module. 

2x3

Rows

Columns

3x22x2

!!
Defining And Manipulating Arrays in Python!!
Python	
 Statements Notes	
 and	
 Ques1ons
> import numpy as np!

> a = np.zeros(5)!

> a!

> a = np.zeros(5,dtype=int)!

> a!

> b = np.zeros(5,dtype=float)!

> b!

> c = np.zeros((5,3))!

> c!

> d = np.zeros((5,4,3))!

> d

	
 np.zeros	
 allows	
 you	
 to	
 define	
 arrays	
 filled	

iniCally	
 with	
 zeroes.	
 The	
 default	
 is	
 always	
 floats,	

but	
 you	
 can	
 change	
 it	
 by	
 specifying	
 dtype	

!
!
!
!
You	
 will	
 need	
 to	
 get	
 used	
 to	
 working	
 with	
 arrays	

of	
 more	
 than	
 two	
 dimensions.	
 	
 Look	
 at	
 how	

python	
 “visualizes”	
 these	
 arrays.	
 	
 Try	
 to	
 make	
 a	
 4	

dimensional	
 array;	
 a	
 5	
 dimensional	
 array.	
 	
 The	

visualizaCon	
 is	
 not	
 so	
 good	
 now...

> a = np.zeros(100)!

> print a!

> a!

> a = a +2!

> 10**a!

> a**2!

> import math!

> math.exp(a)!

> np.exp(a)!

> b = np.exp(a)!

> b

13.	
 What	
 is	
 the	
 difference	
 between	
 using	
 print	

and	
 not	
 using	
 it?	

!
Now	
 we	
 are	
 manipulaCng	
 arrays!	
 Here	
 is	
 why	

arrays	
 are	
 so	
 useful.	
 	
 They	
 allow	
 you	
 to	
 do	
 the	

same	
 opera/on	
 on	
 an	
 en/re	
 set	
 of	
 data.	
 !!
InpuTng	
 an	
 array	
 into	
 a	
 funcCon	
 gives	
 you	
 a	

new	
 array....	
 as	
 long	
 as	
 you	
 use	
 the	
 instance	
 of	

the	
 func/on	
 that	
 is	
 in	
 numpy!	
 !
This	
 also	
 illustrates	
 why	
 doing	
 from ___
import *	
 is	
 dangerous...	
 math	
 and	
 np	
 have	

many	
 of	
 the	
 same	
 func/ons!

> print a[0], a[2]!

> a[0] = 10!

> a[10]!

> c = [0,3,5,2]!

> a[c]!

> a[0], a[3], a[5], a[2]!

> print c[11]

You	
 can	
 also	
 very	
 easily	
 select	
 parts	
 of	
 data	
 from	

arrays,	
 whether	
 it	
 be	
 a	
 single	
 element	
 or	
 a	
 range	

of	
 elements.	
 This	
 is	
 called	
 indexing	
 an	
 array.	

Note:	
 array	
 coun/ng	
 starts	
 at	
 0	

You	
 can	
 also	
 index	
 an	
 array	
 with	
 another	
 array.	
 	

It	
 will	
 output	
 the	
 elements	
 of	
 the	
 array	
 in	
 the	

order	
 given	
 to	
 it.	
 NoCce	
 what	
 happens	
 when	
 we	

try	
 to	
 index	
 an	
 array	
 with	
 a	
 number	
 greater	
 than	

its	
 size.

> a = np.arange(100)!

> a[5:]!

> a[1:5]!

> a[1:10:2]

14.	
 What	
 does	
 np.arange	
 do?	

Indexing	
 in	
 python	
 can	
 be	
 complicated...	
 but	
 that	

is	
 because	
 you	
 can	
 do	
 so	
 much!	

15. What	
 do	
 each	
 of	
 these	
 indexing	
 commands	

do?	

a[start:finish:by]	
 will	
 output	
 the	
 elements	
 of	
 a	

starCng	
 with	
 index	
 “start”,	
 ending	
 at	
 index	

“finish”	
 going	
 every	
 “by”	
 indices

> b = np.zeros((10,10,3))!

> b!

> b[0,0,0] = 10!

> b!

> b[:,0,0] = 1!

> b!

> b[0:4,0,0] = 2!

> b!

> b[1,0:4,0] = 3!

> b

Now	
 onto	
 higher	
 dimensions....	
 !!!!
16.	
 Explain	
 what	
 each	
 one	
 of	
 these	
 commands	
 is	

doing.	

> a = np.zeros(10)!

> b = np.zeros((10,10))!

> a[0] = 2!

> a[1:9] = 3!

> b[0,:] = 2!

> b[0,:]*a!

> c = np.zeros((3,5))!

> print b*c

Arrays	
 can	
 be	
 mulCplied	
 together!	
 !
Make	
 sure	
 you	
 can	
 explain,	
 in	
 words,	
 what	
 each	

of	
 these	
 commands	
 do	
 !!!!
17.	
 What	
 happens	
 when	
 you	
 mul6ply	
 arrays	
 with	

different	
 dimensions?	
 Mul6plying	
 arrays	
 that	

have	
 different	
 sizes	
 is	
 usually	
 not	
 a	
 good	
 idea.

!
Defining and Manipulating Arrays with Numpy. !!

!!

Python	
 Statements Notes	
 and	
 Ques1ons
> a = np.zeros((3,5))!

> a!

> np.transpose(a)

18.	
 What	
 does	
 transpose	
 do?

> b = np.arange(100)!

> print np.size(b), np.size(a)!

> b = b + 3!

> np.where(b > 10)!

> np.where(b < 10)!

> np.where(b == 11)!

> o = np.where(b < 10)!

> b[o]!

> b[np.where(b<10)]!

> b[(b<10)]!

> np.where((b>5) & (b<50))!

> np.where((b==5) | (b==10))!

> np.where(b==1000000)

!
!
19.	
 What	
 does	
 where	
 do?	
 what	
 do	
 ‘<’,	
 ‘>’	
 	
 and	

‘==’	
 indicate?	

!
!
!
You	
 can	
 use	
 the	
 where	
 statements	
 to	
 index	
 an	

array!	
 In	
 fact,	
 you	
 don’t	
 even	
 need	
 to	
 have	
 the	

actual	
 “where”	
 statement!	

The	
 “&”	
 essenCally	
 just	
 means	
 “and”	
 like	
 you	

expect.	
 	
 The	
 “|”	
 means	
 “or”	

An	
 empty	
 array	
 as	
 a	
 result	
 means	
 that	
 there	
 were	

no	
 values	
 that	
 matched	
 your	
 criteria

> c = np.array([1,6,3,4,9,8,7])!

> c!

> np.sort(c)!

> print np.max(c), np.min(c)!

> d = [3,5,2,7,4,8,10]!

> print, d[(c == np.max(c))]

	
 This	
 is	
 another	
 useful	
 way	
 of	
 defining	
 arrays.	
 	

Just	
 get	
 a	
 list	
 of	
 numbers	
 in	
 brackets	
 and	
 use	
 the	

“np.array”	
 func6on	
 to	
 turn	
 it	
 into	
 an	
 array	
 type.	

20. What	
 does	
 “sort”	
 do?	

21. What	
 does	
 np.min/max	
 do?	

22. explain	
 what	
 is	
 happening	
 in	
 that	
 last	
 line.

__!
If Statements and For/While Loops!!
“If” statements allow you to tell python to do something only if a certain logical
statement is true.!!
The Syntax is rather simple.!!
> if [logical true/false statement]:[do something] !
The logical statements used in “if” statements will have similar syntax to the “where”
statements used above. Examples of good logical statements would be:!
> if var < 0: print “hello”
> if var > 0: print “hello”
> if var == 0: print “hello” !
Assuming that “var” is just some variable (NOT an array)!!
Your “if” statement must be a statement that is true or false. So, you have to be careful
using arrays. For example, the following would cause problems.!!
> a = np.array([1,2,3,4,5,6])
> if a == 6: print “hello !
The above if statement is both true and false, since one element of a is equal to 6. In
other words, it makes no sense and python will yell at you!!!
> if a < 10: print “hello” !
Even though all of the elements in a are less than 10, python still won’t like that you are
leaving the possibility for both true and false statements.!!
Of course, there are ways to use arrays in “if” statements. For example:!!
> if np.size(a)==6: print “hello” !
“For” and “While” Loops!!
Sometimes, you want to run a piece of code many times. For this, “for” and “while”
loops are very useful.!!
The general syntax for a for loop is as follows!!
> for i in [list/array of values]: [do something] !

Python sets i equal to the first value in your list, then runs the piece of code within the
loop. It then sets i equal to the next value and runs the loop again, continuing until there
are no more values in your list.!!
To loop through a range of numbers starting at 0 do the following.!!
> for i in range(10): print i !!
The output from the above statement will be:!!
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9 !
You can also have lists defined like this:!!
> for i in [1,8,10,3]: print i !
Or, you can use arrays!!!
> x = np.array([1,9,3,10])
> for i in x: print i !
While loops, on the other hand, will loop continuously until the “while” statement is no
longer met. In other words, you should give python a logical statement that is initially
true, but will become false eventually. For example:!!
> a = 0
> while a < 10: a = a +1
> print a!!
What happened above? First, we initialized the variable “a” to be 0, which is obviously
less than 10. So, the while loop kept adding 1 to our variable. After each iteration, it
checks to see if it is still less than 10. If it is, then it adds another 1 to it. Once a = 10,
python checks once more and the logical statement is now false, so it stops. At the end
of the loop, a = 10.!!
We can combine our loops with if statements. For example:!

!
> a = np.zeros(100)
> a[55] = 1
> for i in range(100): if a[i] == 1 then print i!!
What happened above? We first initialized “a” to be an array where one of the elements
was 1 and the rest 0. We then loop through the elements of the array using “i” . For
each of these elements, we check to see if it equals 1. If it does, then we print out the
value of “i”.!!
Loops will get much more interesting once we start making our own functions and
procedures. In Python you can do multiple line loops and “if" statements within the
interactive environment. Just hit return after each line! You will see a “....:” show up.
This tells you that your lines are going to happen within the loop. Notice also the tab
structure that python gives you automatically... this will be important later… When you
are done with your loop, hit return twice.!!
> x = 0
> for i in range(10):
....: x = x + 1
....: if x<10: print x
....: y = 0
....: while y < x:
....: y = y+1
....: print “y:”, y
....:!!
Be able to explain what the above piece of code does!  

!
__"
File input/output!!
Most of the time, you will be working with data. That data is going to be located in files.
Thus, reading files is a must! Luckily it is (relatively) straight forward.!!
Often, the files you read will be columns of data, where each column represents a
certain type of data and each row represents a different object (like the BrightStars.dat
file we worked with already).!!
The goal is to make a series of arrays, one for each column, where the ith element in
each array corresponds to the ith object in the file.!!
Reading in Data !
Method One: The more “traditional” way!!
First, you need to open the file!!!
> file1 = open(“filename”,’r’)!!
The “r” means we are opening the file specifically to read it.!
To read all the lines in the file, you will need to make a loop.!!
> content = file1.readlines() !
This command will make a list (slightly different from an array… don’t worry too much
about that), where each element is a line in file1. Each line is treated as a singe string.!!
> content[0].split([delimiter]) !
The split command will make an array of strings from a single line, where the elements
are separated by the [delimiter] character. The default delimiter is a space. Other
common delimiters are commas, colons, semi-colons, etc... though spaces are the most
common by far. How do we turn this into an array with actual numbers?!!
First, define your arrays. Say we have N columns in our file. Define N arrays of the
same size as there are lines in the file.!!
> var1 = np.array([])
> var2 = np.array([])
...
> varN = np.array([]) !
Now, we want to loop through each line and set the elements to the correct arrays.!

!
> for i in range(np.size(content)):
 tmp = content[i].split()
 var1 = np.append(var1,tmp[0])
 var2 = np.append(var2,tmp[1])
 ...
 varN = np.append(varN,tmp[N-1]) !
Now we have a bunch of string arrays for each column of data.!!
> var1 = var1.astype(int)
> var2 = var2.astype(float)
....
> varN = varN.astype(int) !
Again, we use the astype command to change the variable type of each array to match
the individual pieces of data.!!
Method Two: The Simple Way!!
First, you will need to copy over a very useful file.!!
% cp ~premapta/python/readcol.py ~/python/pro !
Now you can open the file readcol in python. You can take a look inside readcol.py to
see the different options and what they do.!!
> import readcol
> var1,...,varN = readcol.readcol(‘filename’,twod=False) !
The above command will make N one-dimensional arrays. You can also put the data in
a single two dimensional array of size MxN where M is the number of lines in your file
and N is the number of columns (note that you have to make twod=True).!!
> data = readcol.readcol(‘filename’,twod=True) !
The greatest thing about readcol.py is that this code is not only fast, but it is able to
correctly guess the type of variable in each column. It can also do some cool things if
the column names are given at the top of the file. Again, look in readcol.py for more info
on options.!!
There are several other options for reading files, such as np.genfromtxt and np.loadtxt.
They all have advantages and disadvantages. The main disadvantage of these is that
they cannot handle files with different data types (e.g. strings and floats)!!!

Writing To Files!!
Writing to files is simple. Again, first you must open the file, this time for writing.!!
> file = open(‘filename’,‘w’)
> file.write(“stuff”) !
Note: python will not go to a new line every time you do the “write” command. To create
a new line, use the “\n” at the end of your string.!!
> file.write(“stuff\n”) !
Don’t forget to close the file!!
> file.close() !
Note: opening a file with “w” will overwrite your stuff! If you want to add on to a file, use
the “a” option, which will open the file for appending.!!
> file = open(‘filename’,’a’)
__

Writing Your Own Executables and Functions!!
You can save python commands in executable scripts. Open up a file ending in “.py”
with emacs.!!
% emacs pythonScript.py !
Put in all the code you want to run in the .py file. Even importing modules can be done
within the file. !!
The executable can be run from the command line like this:!!
% python pythonScript.py !
Python will run everything in the file in order.!!
Alternatively, what you can do is run the file within the iPython environment.!!
> import pythonScript !
Again, this will run the scrip from beginning to end.!!
Note: When writing for/while loops or if statements in .py files, you must use spaces/
tabs correctly. Code within each loop must have the same amount of “whitespace”
before it.!!

for i in range(100):
<tab>[do things]
<tab>for j in range(100):
<tab><tab>[do things]
<tab><tab>[do more things]
<tab>[do some other stuff]
<tab>if [true/false statement]:
<tab><tab>[do stuff] !
Defining Functions!!
You can define functions within .py files, a very useful way of organizing your code.!!
Functions are defined like this:!!
def func(var1,var2,...,varN):
 [do stuff]
 [do more stuff]
 [everything must be tabbed in once!]
 for i in range(100):
 [you can even do loops!]
 [but be careful of tabs/spaces] !
The above defines a function called func that takes N inputs called var1,var2,...
You don’t have to have anything ending the function. Just go to the next line without
tabbing. For example:!!
[import all the stuff you need first] !
def func1(x,y,z):
 [stuff] !
def func2(x,y,z):
 [other stuff] !
ect... !
Now, you can use these functions within a script within the .py file and then run it using
the python filename.py command. Or, you can utilize them in the interactive
environment (basically, think of your script as another module to import!)!!
> import pythonScript.py
> pythonScript.func1(x,y,z)
> pythonScript.func2(x,y,z) !

Functions can return values to you. To do this, just use this syntax:!!
return value1, value2,value3 !
The above line will a return 3 numbers. To store these values, just do the following:!!
> a,b,c = pythonScript.func1(x,y,z) !
a,b,c will be set to value1,value2,value3 respectively.!!
> list = pythonScript.func1(x,y,z) !
If you just set the output of func1 to one variable, you will get a list. A list is somewhat
like an array, but with less functionality. You can index a list similar to a one dimensional
array.!!
list = (a,b,c)
list[0] = a
list[1] = b
list[2] = c !!!!!!!!!!!!!!!!!!

__

Intro to Plotting!!
For plotting, we use matplotlib, which is a very useful library. In particular, we will use
the sub-module pyplot within matplotlib.!!

!

Python	
 Statements Notes	
 and	
 Ques1ons
> import numpy as np!

> import matplotlib.pyplot as plt!

> plt.ion()!

> x = np.arange(100)!

> y = np.arange(100)/50.!

> plt.plot(x,y,’r-’)!

> plt.clf()!

> plt.plot(x,y,’-’)!

> plt.plot(x,y/2,’--’)!

> plt.plot(x,y*2,’.-’)!

!

!
!
This	
 line	
 puts	
 you	
 in	
 interacCve	
 mode	
 !
“plt.plot”	
 will	
 open	
 up	
 a	
 window	
 with	
 your	
 plot	

in	
 it.	
 The	
 string	
 at	
 the	
 end	
 sets	
 the	
 style	
 and	
 color	

of	
 the	
 line.	
 	
 In	
 this	
 case,	
 r	
 =	
 red,	
 -­‐	
 =	
 line.	
 	
 	

Close	
 the	
 current	
 plot	
 window	
 and	
 start	
 over.	

if	
 you	
 plot	
 more	
 data,	
 it	
 will	
 show	
 up	
 on	
 the	

same	
 plot.	
 If	
 you	
 don’t	
 specify	
 a	
 color	
 python	
 will	

automaCcally	
 make	
 it	
 a	
 color	
 and	
 it	
 will	
 choose	
 a	

different	
 color	
 for	
 each	
 set	
 of	
 data	
 you	
 plot.	

Some	
 other	
 useful	
 strings: 
 
b	
 =	
 blue	
 ;	
 k	
 =	
 black	
 ;	
 g	
 =	
 green	
 ;	
 -­‐-­‐	
 =	
 dashed	
 line	

+ =	
 ‘+’	
 symbol	
 ;	
 ‘x’	
 =	
 ‘x’	
 symbol	
 ;	
 .	
 =	
 dots	

.-­‐	
 =	
 dot-­‐dash	
 ;	
 o	
 =	
 big	
 dots

> plt.xlabel(‘x-axis’)!

> plt.ylabel(‘y-axis’)!

> plt.title(‘This is a Plot’)

You	
 can	
 Ctle	
 your	
 plot	
 and	
 label	
 the	
 axes.

> plt.axis([0,50,0,50])!

> plt.axis([100,0,0,50])!

You	
 can	
 also	
 change	
 the	
 axis	
 ranges.	
 The	
 general	

format	
 is	
 plt.axis([xmin,xmax,ymin,ymax])!

You	
 can	
 even	
 reverse	
 the	
 axis	
 by	
 switching	
 xmin	

and	
 xmax.

> plt.savefig(‘name.pdf’)!

> plt.close()

you	
 can	
 save	
 the	
 current	
 figure	
 to	
 a	
 file.	
 	
 Use	

‘.pdf’	
 or	
 ‘.png'	
 for	
 the	
 best	
 results.

> plt.subplot(321)!

> plt.plot([0,1],[0,1])!

> plt.subplot(323)!

> plt.plot([0,1],[0,1])!

> plt.close()

This	
 will	
 make	
 a	
 3	
 by	
 2	
 set	
 of	
 plots.	
 The	
 third	

number	
 selects	
 your	
 current	
 working	
 plot	
 (1	

through	
 6	
 in	
 this	
 case)	

23.	
 What	
 is	
 the	
 difference	
 between	
 plt.close	
 and	

plt.clf?	

!
Making legends in Python!!
This is super easy. When you plot anything (even a histogram) just add in the keyword
label = “whatever you want to call these data points/lines”. Then,
when you have plotted everything you need, type in the command plt.legend() and
python will make your legend!!!
The only really important keyword for legend is loc = “string”!
This will set the location of your legend. The strings you can use that will be understood
are: ‘best’, ‘upper right’, ‘upper left’, ‘lower right’, ‘lower left’, ‘right’, ‘center’, ‘center left’,
‘center right’, ‘lower center’, ‘upper center’, ‘center’!!
Hopefully those are pretty self-explanatory! If you are working in the plt.ion()
environment, you can actively experiment and see the results in real time!!
__!
Histograms!!
Histograms are relatively simple things to make in python. We will use matplotlib. The
function we will use is plt.hist which has the following syntax!!
> n,bins,patches = plt.hist(intputarray, bins=100) !
This will not only plot the histogram for you, but it will return the number of elements in
each bin (n) and the bins themselves (bins). You can name the three variables holding
the output anything you want, but you need three. Don’t worry about what the “patches”
are.!!
Keywords for the hist() function!!
You can denote the color and linestyle in the same way as you do in plt.plot()!!
bins: number of bins you want to have. can also be a list of bin edges.!
range: lower and upper range of the bins!
normed: “= True” means you get a probability distribution instead of just raw number
counts!
histtype: ‘bar’ = traditional stype, ‘step’ = a line plot. looks better usually!
Weights: this is an array of values that must have the same size as the number of bins
you have. This will be a factor by which you will multiply the number count of each bin.
In other words, it will make the “number of elements” output be n*weights instead. This
is a good way to normalize your histogram outside of just using the normed variable.
For example, if you wanted to plot the fraction of objects in each bin, you would set
weights equal to an N sized array (N = number of bins you have) where each element
of the array is equal to 1/(total # of objects).

